7 research outputs found

    Effect of weekend admission on in-hospital mortality and functional outcomes for patients with acute subarachnoid haemorrhage (SAH)

    Get PDF
    BACKGROUND: Aneurysmal subarachnoid haemorrhage (aSAH) is an acute cerebrovascular event with high socioeconomic impact as it tends to affect younger patients. The recent NCEPOD study looking into management of aSAH has recommended that neurovascular units in the United Kingdom should aim to secure cerebral aneurysms within 48 h and that delays because of weekend admissions can increase the mortality and morbidity attributed to aSAH. METHOD: We used data from a prospective audit of aSAH patients admitted between January 2009 and December 2011. The baseline demographic and clinical features of the weekend and weekday groups were compared using the chi-squared test and T-test. Cox proportional hazards models (Proc Phreg in SAS) were used to calculate the adjusted overall hazard of in-hospital death associated with admission on weekend, adjusting for age, sex, baseline WFNS grade, type of treatment received and time from scan to treatment. Sliding dichotomy analysis was used to estimate the difference in outcomes after SAH at 3 months in weekend and weekday admissions. RESULTS: Those admitted on weekends had a significantly higher scan to treatment time (83.05 ± 83.4 h vs 40.4 ± 53.4 h, P < 0.0001) and admission to treatment (71.59 ± 79.8 h vs 27.5 ± 44.3 h, P < 0.0001) time. After adjustments for adjusted for relevant covariates weekend admission was statistically significantly associated with excess in-hospital mortality (HR = 2.1, CL [1.13–4.0], P = 0.01). After adjustments for all the baseline covariates, the sliding dichotomy analysis did not show effects of weekend admission on long-term outcomes on the good, intermediate and worst prognostic bands. CONCLUSIONS: This study provides important data showing excess in-hospital mortality of patients with SAH on weekend admissions served by the United Kingdom’s National Health Service.; However, there were no effects of weekend admission on long-term outcomes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00701-016-2746-z) contains supplementary material, which is available to authorized users

    Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging

    Get PDF

    9.4T MR microscopy of the substantia nigra with pathological validation in controls and disease.

    Get PDF
    BackgroundThe anatomy of the substantia nigra on conventional MRI is controversial. Even using histological techniques it is difficult to delineate with certainty from surrounding structures. We sought to define the anatomy of the SN using high field spin-echo MRI of pathological material in which we could study the anatomy in detail to corroborate our MRI findings in controls and Parkinson's disease and progressive supranuclear palsy.Methods23 brains were selected from the Queen Square Brain Bank (10 controls, 8 progressive supranuclear palsy, 5 Parkinson's disease) and imaged using high field 9.4Tesla spin-echo MRI. Subsequently brains were cut and stained with Luxol fast blue, Perls stain, and immunohistochemistry for substance P and calbindin. Once the anatomy was defined on histology the dimensions and volume of the substantia nigra were determined on high field magnetic resonance images.ResultsThe anterior border of the substantia nigra was defined by the crus cerebri. In the medial half it was less distinct due to the deposition of iron and the interdigitation of white matter and the substantia nigra. The posterior border was flanked by white matter bridging the red nucleus and substantia nigra and seen as hypointense on spin-echo magnetic resonance images. Within the substantia nigra high signal structures corresponded to confirmed nigrosomes. These were still evident in Parkinson's disease but not in progressive supranuclear palsy. The volume and dimensions of the substantia nigra were similar in Parkinson's disease and controls, but reduced in progressive supranuclear palsy.ConclusionsWe present a histologically validated anatomical description of the substantia nigra on high field spin-echo high resolution magnetic resonance images and were able to delineate all five nigrosomes. In accordance with the pathological literature we did not observe changes in the nigrosome structure as manifest by volume or signal characteristics within the substantia nigra in Parkinson's disease whereas in progressive supranuclear palsy there was microarchitectural destruction

    High resolution MR anatomy of the subthalamic nucleus: Imaging at 9.4 T with histological validation

    No full text
    Using conventional MRI the subthalamic nucleus (STN) is not clearly defined. Our objective was to define the anatomy of the STN using 9.4 T MRI of post mortem tissue with histological validation. Spin-echo (SE) and 3D gradient-echo (GE) images were obtained at 9.4 T in 8 post mortem tissue blocks and compared directly with corresponding histological slides prepared with Luxol Fast Blue/Cresyl Violet (LFB/CV) in 4 cases and Perl stain in 3. The variability of the STN anatomy was studied using internal reference points. The anatomy of the STN and surrounding structures was demonstrated in all three anatomical planes using 9.4 T MR images in concordance with LFB/CV stained histological sections. Signal hypointensity was seen in 6/8 cases in the anterior and medial STN that corresponded with regions of more intense Perl staining. There was significant variability in the volume, shape and location of the borders of the STN. Using 9.4 T MRI, the internal signal characteristics and borders of the STN are clearly defined and significant anatomical variability is apparent. Direct visualisation of the STN is possible using high field MRI and this is particularly relevant, given its anatomical variability, for planning deep brain stimulation
    corecore